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Abstract—Superposition of fundamental solutions is used to find temperature and heat flux distributions in
gray walled two-dimensional rectangular enclosures with a gray absorbing-emitting, isotropically scattering
medium. The fundamental solutions are temperature and heat fiux distributions for enclosures with black
boundaries and a step change in temperature over a finite wall interval. They are found using a variation
of the conventional zonal method. Detailed heat flux and temperature distributions for basic cases are
presented to illustrate the simplicity of the superposition procedure. Based on these results, the effects of
surface boundary conditions on the temperature distribution and heat transfer are discussed.

1. INTRODUCTION

THE IMPORTANCE of radiative heat transfer in many
engineering systems is well known. Until recently,
quantitative illustration of these effects has been
difficult because of the mathematical complexity of
radiative heat transfer. In many practical problems it
is necessary to analyze radiative heat transfer in a
multi-dimensional enclosure with reflecting and emit-
ting boundaries. The temperature might be specified
on some surfaces, while on others the heat transfer
rate or a heat transfer coefficient might be given. The
problem of radiative equilibrium in a two-dimensional
rectangular enclosure has been solved many times [I-
9]. One widely used analysis technique is the zonal
method described in ref. [10] and its variations, as in
refs. [4, 6, 7). The other widely used family of tech-
niques is the differential methods [1-3]. Regardless of
the method used there is a facet of this problem which
has been largely neglected; in the absence of con-
duction and convection, radiation is a linear process.
Therefore, the method of superposition can be used
to find solutions to problems with complex boundary
conditions.

Previous works [1-9] solved for the temperature
and heat flux distributions for basic enclosures with
one *hot’ wall, a wall at unit temperature, and three
cold walls, walls with zero temperature. The tem-
perature and heat flux distributions for more complex
enclosures with more than one *hot’ wall are found by
superimposing the distributions of the basic
enclosures. This is inefficient because nearly identical
distributions must be generated if the wall emissivities
change or boundary conditions become complicated.
Modest [11] and Crosbie and Koewing {12] used a
more sophisticated superposition technique, similar
to the one presented in this work, to analyze two-
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dimensional plane layers. The total exchange area
method described by Hottel and Sarofim [10] and its
variants [13, 14] is another advanced superposition
technique; however, it has the computational in-
efficiency of refs. [1-9]. The advantage of the total
exchange method is that it is valid even in multi-mode
heat transfer. Direct superposition is not valid in these
non-linear situations so either the total exchange
method or others as in refs. [15-18] must be used for
solution.

In multi-dimensional enclosures with reflecting
boundaries and/or heat flux boundary conditions sur-
face radiosity, not surface temperature or heat flux, is
the ‘natural’ boundary condition, The radiosities, not
the temperature or heat flux, must be superimposed.
Although the previous works [1-9] implicitly super-
impose the radiosities, they do not take advantage of
the possibility that the radiosities themselves can be
obtained through superposition. This is a major limi-
tation ; in this work a superposition procedure based
on surface radiosity is developed. The radiosity at a
diffusely reflecting surface is a function of both its
temperature and heat flux. Since one of these is
unknown, a system of integral equations has to be
solved to generate the heat flux and temperature dis-
tributions.

The remainder of this paper is organized in three
sections. First, the superposition procedure will be
illustrated mathematically. For a rectangular enclos-
ure, the fundamental solutions which are required
for this superposition procedure will be identified.
Second, a solution method which is extremely efficient
in generating these fundamental solutions will be
described. The method is a generalization of a tech-
nique which has been shown to be effective [7, 8, 17]
for two-dimensional radiative heat transfer with black
isothermal boundaries. Finally, solutions for selected
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F(i,, y,2), F\(A,;, y,z) functions defined
by equations (7a) and (7b)

Fm.n F(‘;'h ’?mv Cn)

g(4,, ¥, 2), (4.5, ¥, 2) heat flux vectors the
components g,, g, g5, ¢: of which are
defined in equations (4b) and (4c)

G(4y, ¥, 2), G'(4., y,2) functions defined

by equations (8a) and (8b)

G, ,x(x,y) function defined by equation
(All)

H,, parameters defined by equations
(A2)-(AS5)

J(y, z) surface radiosity
K, extinction coefficient
L, optical thickness in the y-direction, K.Y
L, optical thickness in the z-direction, X.Z2
M, (x,y) function defined by equation

{A13)

N,., function defined by equation (Al)
P4/ parameters defined by equations

(A15)-(A18)

NOMENCLATURE
A, jma coefficient defined by equation (18) q{ y, 2} heat flux vector
and derived in the Appendix qn heat flux in direction normal to wall
B, cocfficient defined by equations (18) and r radial coordinate used in equations (11),
(A23) (15) and (16) and Fig. 2
Sf(Ly, Ly 4, 3,2, f'Ly, Ly, 4, y,2) functions S,(ax) exponential integral function,
defined by equation (4a) @x"/m) I3 (exp (—ay/(x* +x%)/

(2 4+x)VH+Ndr a,120; n=0,1,...
¥y coordinate
Y dimension of enclosure in the y-direction
z coordinate
zZ dimension of enclosure in the z-direction.

Greek symbols
B angles defined by equations (A7)~(A10)
€ emissivity
A integration variable used in equations
{4a)-~(4c) and (5a)—(5¢)
n non-dimensional coordinate in the
y-direction, y/Y
non-dimensional coordinate in the
z-direction, z/Z
emissive power
emissive power of wall
angular coordinate used in equations
{11), (15) and (16) and Fig. 2
" angle defined by equation (13)
s angle defined by equation (14).

£
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enclosures will be presented to illustrate the effective-
ness of the present solution technique.

While the present approach can be readily applied
to an enclosure with arbitrary surface emissive power
and emissivity (or heat flux) distribution, only three
specific cases are presented to illustrate the general
effect of surface emissivity and heat flux boundary
conditions on multi-dimensional radiative heat trans-
fer. In the first analysis, the walls are assumed to be
diffusely reflecting and emitting with the bottom wall
an isothermal surface with unit emissive power, other
walls cold. In the second case, the bottom wall is
assumed to be black, nonisothermal with constant
unit heat flux and the other walls black and cold.
Lastly, the case of an isothermal bottom wall in com-
bination with two cold walls and one adiabatic dif-
fusely reflecting or specularly reflecting side wall is con-
sidered. These cases are selected because solutions to
the first analysis have been reported by other inves-
tigators {24, 6]. The efficiency and accuracy of the
present approach can be seen in direct comparison.
The second analysis demonstrates the ease of applying
the present technique to enclosures with heat flux
boundary conditions. Though less common than tem-
perature boundary conditions, there is literature in
this area from Gebhart [19] in 1961, for enclosures
with non-participating media, to Sokmen and Raz-

zaque [18] in 1987, for combined conduction and radi-
ation heat transfer. The last analysis reemphasizes
the importance of boundary conditions, the difference
between specular and diffuse reflection in multi-
dimensional radiative heat transfcr.

2. SUPERPOSITION PROCEDURE

Consider a rectangular enclosure with a coordinate
system as shown in Fig. 1. All boundaries are assumed
to be diffusely emitting and reflecting surfaces. From
standard references [10, 20}, it can be readily shown
that the radiosity at the boundary is given by

1 —e(s)
J(s) = 8.(s)— W%(S) ¢))
z
4
Y v
Fi1G. 1. Geometry and coordinate system for the two-dimen-
sional enclosure.
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where s is a coordinate measured along the boundary,
8.(s), &(s) are the emissive power and emissivity of
the boundary at s and ¢,(s) is the radiative heat flux
in the direction normal to the boundary. Using equa-
tion (1) the boundary radiosity J(s) for an enclosure
with temperature boundary conditions can be found
using superposition. This can be seen as follows.

(1) For an assumed boundary radiosity distri-
bution, J(s), the temperature and heat flux dis-
tributions in the medium can be found. Therefore,
equations for the temperature and heat flux dis-
tributions can be derived in terms of an unknown
radiosity distribution J(s).

(2) The expressions for surface heat flux g,{s) and
the given boundary condition 8,,(s) can be substituted
into equation (1). The result is a set of equations for
the unknown radiosity distribution J(s).

For heat flux boundary conditions the same reasoning
applies. The expressions for surface heat flux ¢,{(s) are
equated to the given boundary condition ¢,(s).

2.1, Case 1: hot diffuse bottom wall and three cold
diffuse walls

In this case, the bottom wall is assumed to be gray
and hot with 6(y, 0) = 1.0 and emissivity g, and the
other three walls cold with 6(y, Z) =0(0, 2) =
(Y, z) = 0 and emissivity ¢,. Equation (1) becomes

|
Jp0)=10-—2(n0)  Ca)
1—e,
I 2 =40 2) (2b)
l "‘E;
J0,7) = = ——4,0,2) (20
and
J©0,2) = J(Y,2). (2d)

To generate a set of integral equations for the
unknown radiosity distribution, two sets of fund-
amental solutions are introduced. Specifically, f(L,,
Ly, 4, y, 2) and g(L,, L;, A, y, 2) are the emissive
power and heat flux distributions for a rectangular
enclosure with a gray medium and black walls. The
bottom wall (z = 0) is ‘hot’ with unit emissive power
from y =0 to 4; the remainder of the bottom wall
and the other three walls are ‘cold’ with zero emissive
power. These fundamental solutions are used to
account for the ‘non-zero’ boundary conditions of the
top and bottom walls (z = 0 and Z). To account for
the ‘non-zero’ boundary conditions at the two side
walls {y = 0 and Y), the functions f*(L,, L;, 4, », 2)
and g'(Ly, Ly 4, y, 2) are introduced. They are
the emissive power and heat flux distribution for an
enclosure which has a *hot’ side wall (y = 0) with unit
emissive power from z = 0 to 4 the remainder of the
wall and the other three walls ‘cold’ with zero emissive
power. The two sets of fundamental solutions are
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related as follows:
S LnLydy.2)=f(LyLi4z,y)  (3a)
9Ly, Ly, 4, y,2) =g.(Ly, L1y A4 2,y)  (3b)
gLy, Ly, 2, y,2) = g,La, L, 4,2, ). (3c)

The emissive power 6( y, z) and heat flux q(y, z) for
a problem with arbitrary radiosity J(y, z) at the
walls can be readily generated from these solutions by
superposition. The specific relations are

ra
0(y.2) =J; VL Ll U@, 00d4

Y
+ “a’[f(LhLb A;y,Z"Z)]J().,Z)di,
o D4
Z3
+| UL L4, 0,100, ) di
s 04

r4
+ L %[}"‘(L,,Lz,l, Y-y, 2}J(Y,2)dA (4a)

1 4

0 \ .
QR(}’Q Z) = J 5:{ [gz(Lh LZ’ Aa )’, Z)]J(A, 0) d’*

L]

®e

g 4
=}, szl LiLa &y, Z-2))J (2, 2) 4

3

0
+ [g:(LI) Lzal, y9z)]J(0’ A) d/:
s 04

4
th 561{92(1"*1*2’& Y-y, 2)JJ(Y,4)di

o

(4b)

b 4
d . .
EF [gy(L!’ Ly, 4, 3, 2)}J(4,0)d4

0

QF()”Z) 3'[
Yo
+L b"i[gy(LhLz, A y,Z—-z)}J(LZ)d):

r4
+J~ "a%[g;(lq, Lz, .1, » 3)}1(0, ).) di

i
a 3 Y -
- A gj{gy(l‘hLb 1’ Y“',Y,Z)]](Y,/-) dai. (40)

Substituting equations (4b) and (4¢) into equations
(2a)-(2c), one obtains

l“'ao Y 3 . -
J(y’o)=1" P ﬁ[gz(LbLb;w}’&o)}J(’«o)d’-
0 0

Y
a -
—j‘ a[g:(L‘,Lz,l’ y,Z)]J(A,Z)d;.

[+

Z a .
+J; (52 [g:(Lh L27)'9 .1":0)1

+ *a% gL, L2, A4, Y-y, 0)])1(0, 4 df'«} (5a)
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J02) =——9| #l9:(L1. L2 4y, DA, 00dA
& o oA
ra
= | 7709:(L1; L2, 4, y,0))J(4, Z2) d4
o 04
Z a . .
+J; (g[g:(L!9L2sA&y:z)]

1—g

%
a 3 " -

{ﬁ, 77 19(L1, L2, 4,0.91J(2,0)d4

vé
+j w{gv(LhL;,A,O,Z—z)]}(;“Z)d;.

o OA ™

<(¢

~fat .

+J; (5;' [g:(Ly, L3, 4,0,2)]

7
- 5}[9;'(['“ L, Y, z)])J(O, A) di}. (5¢)
Since analytical solution to this class of problems is
extremely unlikely, it is useful to express equations
{5a)—(5¢c) as numerical quadratures. These equations
become

J(y,0) =1

l"'so

~
{z G.(Ly, Ly, A, ¥, 0)J(4,,.0)
i

&

N
- Z G:(Lh L2~ Ay.is Vs Z)J(;r'y.iv Z)

=1

M
+ z [G:'(Lla LZ! }':J’ y! 0)

Jj=1

+G§(L!9L2’ 'z'z.j’ Y—Y, 0)}‘,(0* ;':‘j)} (63)

J(».Z)

1—g | & .
= Z G.AL\,L,, j;v.h Ys Z)J(’-_v.ioo)

€ il

N
- Z G:(Lh LZ’ }'y.l’ Y, O)J(j'y.i’ Z)
imt

o
+ 3 GLi Ly ify 3. Z)

J=1

+G(Ly. Ly, 4y Y=y, Z))J (O, i:.j)} (6b)

J(,z2) =

l—g, § & . .
- Y G (Li, L1, 4,:,0,2)0 (4, 0)

&y it

N
+ Z Gy(L!v Lz’ Ay.h 0, Z”Z)J()'y.io Z)

i=i
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M
+ Z [G;’(Ll’ LZ’ j':_j’ Os 2)

jut

_G;(LlyLZa j':.jv Y1 Z)]J(O, A:.j)} (60)
where
; of . .
Fdyi 3 2) = 57(&.0 y, )B4, (7a)
at .
P ()':.j’ y’ Z) = '5/1" ('t:.j’ y’ Z)AA': (7b)
) og ,
G('t,r.n Vs Z) = "é“-‘v (;'y.n s :)A/'y (83)
A .
og . ,
G4 3. 2) = 37 (Ao 3,20, (8b)
with AL =Y/N, Al =2Z/M, i,=iAk, and

A:; = jAi,. Physically, F(4,,, y, z) and G(4,,, », 2)
can be interpreted as the emissive power and heat flux
distribution in a black enclosure with a unit emissive
power between y = 4,,~A4 /2and y = 4,,+ A, /2 at
the bottom wall. F*(4.,, y, z) and G'(4,;, y, 2) can
be interpreted as the emissive power and heat flux
distribution in a black enclosure with a unit emissive
power between z = A_;—~Ad/2and z = 4. ;+A4/2 at
the side wall. Evaluating equations (6a)—(6c) at the
discrete points .

(A4, O .
(Al Z) i=0,....,N

and
0,/AL) j=0,.... M

a set of 2N+ M+ 3 equations are readily generated
and solved for the unknown radiosity distributions.
Half elements are used in the corners. The super-
position is clearer when N = M.

2.2. Case 2: unit heat flux at bottom wall and three
cold black walls

In a general case the discretized forms of equations
(4b) and (4c) are equated to the given boundary fluxes.
For a unit heat flux at the lower wall and remaining
walls cold (8, = 0) and black, the governing equation
is

N
= Z G.AL,, L,, Ay.x‘s Vs O)J(';-y.i’ 0). (9)
iml

The radiosity at the three cold, black boundaries is
zero. Note that J(4,,, 0) is independent of the surface
emissivity &,. Because they are dependent only on the
surface radiosity J(4,,, 0) (equations (4a)—(4c)), the
temperature and heat flux distributions within the
medium are also independent of surface properties.
We can conclude that in an enclosure with only heat
flux and cold black wall (zero radiosity) boundary
conditions, the temperature and heat flux distri-
butions are independent of the surface properties of
the flux walls. This is known for the surface radiosities
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of enclosures with non-participating media {10, 19,
20}

2.3. Case 3: hot diffuse bottom wall, two cold diffuse
walls and adiabatic side wall

In this case, the boundary conditions at the top,
bottom and left side wall ( y = 0) are identical to those
of case 1 while the right side wall (y = Y) is diffuse
and adiabatic. The governing equations are

J(5,0) =1

‘ -80
€o

N
{ z Gz(Lh Lz’ ly.i’ W O)J(Ay.h 0)
dm
N
- Z Gz(LI’ L29 }'y.h W Z)J(;‘vu Z)
LR}

M
+ z G;(Lh Lz’ A:.j’ )’, 0).’(0, A:.j)
F=1

M
+ Z G:(Lh Lzal:.}’ Y"y' O)J( Y, AzJ)}
j=1

(10a)

J(»,Z)

l-3|
gy

N
Z‘ Gz(Ll’ LZa Ay.ls Y Z)J(Ay.l’ 0)
N
- z Gz(Lh LZ; ly‘is 4 O)J(’Q‘\,u Z)
=1

M
+ Z G:-(Lh LZ’ }':.j’ V> Z)J(()’ Az.j)
j=1

M
+ 3 GULy, Ly ks, Y=1,2)J(Y, 1_.,,)} (10b)
Jut

J@0,z) =

l"ﬁ]
&y

N
{Z' Gy(L\ L] Lz, }‘y.h 09 Z)J('iy.l’ 0)
im

N
+- 2 Gy(L|, Lz, )‘y.h 0, Z“"Z)J(;-y.l’ Z)

iw

M
+ z G;(Lh Lh lg,_[; ot Z)J(O, lz.j)
j=1

M
- Z G;(Lh Lb i:.ﬂ Y» Z) J( Y9 1:.})} (IOC)

J=t

N
0 = z Gy(L iy L21 }'ydi Ya Z)J(Ay.h 0)
(L2
N
+ Z Gy(Lls LZt )'y.iv Y9 Z-Z)J()'y.h Z)
-

M
+ Z G;(Lh LZ: A:J& Y9 Z)J(O, A:.j)
Jet

M
=Y GY(Ly,L3,4.,,0,2)J(Y, 4, ). (10d)
=1

Note that equation (10d) is generated from an equa-
tion with the same form as equation (10b) or (10c)
with g = 0; this was used in ref. [10] to model adiabatic
walls.
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Because of symmetry, results generated in case 1
for an enclosure with optical geometry 2L, x L, are
equivalent to those for an enclosure with optical
dimension L, x L, with a perfectly reflecting specular
side wall. A direct comparison with results generated
by case 3 readily illustrates the difference between
specular and diffuse reflection in two-dimensional
radiative heat transfer.

3. FUNDAMENTAL SOLUTIONS

An enclosure with a gray, absorbing-emitting, iso-
tropically scattering medium in radiative equilibrium
is identical to an enclosure with the same optical
geometry with a medium that does not scatter. This
can be seen from ref. [10] where it was shown that
for an isotropic medium in radiative equilibrium the
volumetric radiosity is equal to the black body emis-
sive power. An enclosure with a gray, absorbing—
emitting, isotropically scattering medium can be
analyzed with the zonal techniques used for a gray,
absorbing-emitting medium. The method of solution
developed in previous works (7, 8, 17] is now used to
generate the fundamental solutions F(4,, y, z) and
the associated heat flux distribution G(4,, y, 2). The
functions F'(4,, y, z) and G'(4,, y, 2) can be generated
from equations (3a) to (3¢). In terms of a ‘polar’
coordinate introduced in the previous work [7], the
governing integral equation for F(4,, y, z), the volu-
metric radiosity or the black body emissive power, is

4F(,n,0) = j j , r(z,.,,,+ LL‘cos 6.0

+ z’—sin ¢)s. ® drdqs+f’ Sy(Latsecd)dd (1)
2 1

where
=2 =z
" - Yn C Z
Li=KY L,=KZ (12)
and
aLidi_ia—n)
= tan l—-————-—w—*’ 13
¢| ch ( )
Ly y2—n)
= tan™ ' —————s 14
¢2 n LZC ( )

K, is the extinction coefficient of the medium, The heat
flux expressions are

. r
Gq(z'h"so = ‘j"{ F(/l,-, n+ ‘L—COSQS,{
(r.b) t

+ z’-;sin dJ)S;(r) cospdrdé

®2
"L Sy(L{secg)singdg  (15)
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r
G (A, {) = --”; . F().,-,rH» z‘TCOS¢,C

+ ...r_sin ¢)Sz(r) sin ¢d" d¢
L,

L5
+£ Ss{L,{secp)cospdd. (16)

The region of integration (r, ¢) for the above double
integrations at a given (n, {) is illustrated by Fig. 2.

Unlike the previous work [8], the fundamental solu-
tions will not be generated by a point allocation
method in which a single polynomial is used to rep-
resent the radiosity over the whole enclosure. For
improved computational efficiency and accuracy, the
rectangular enclosure is broken into a finite
N+1xN+1 grid with the nodal temperature
Fon= F(}'u‘! Hms {.) where Im = ’”A’L {n = nAl, with
m, n=0, N and Ay = A{ = I/N. Within each rec-
tangular element bounded by the four points (1., {,.),
(mm Cn+ 1)9 ('Inu-l» Cn) and ("ﬂl+l1 Cu+ I)’ the emissive
power distribution is assumed to be given by the fol-
lowing linearized expression:

Fm —Fm.n
F(;‘b'f’ C) = Fm.u+ ~ lz (ﬂ“mA'I)
Ui
Fm.n+l_'Fm.n
TR (D)
FM+IJ!+'+FM—FM+L"_FMA+!

+ —mAnX{—nA)).

ATAL (n—mAnX{ —nAl)

an

Substituting equation (17) into equation (11) and
evaluating at (n;, {;), a set of N+1 x N+1 algebraic
equations for the unknown nodal temperatures can
be generated as follows:

mnwN
4FI.)‘ = Z . Af.j.m.nme“*’Bl,/,
i,j=0,1,...,N. (18)

Detailed expressions for 4, ;,., and B,; are given in
the Appendix. In general, these coefficients are ex-
pressions involving single integrals of the general ex-
ponential integral function S,(x) which have been
studied extensively in previous works [7, 8].
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I Lyn }

' L(1-£)

(n.£)

Fi¢. 2. Domain of integration and the ‘polar’ coordinate
system used in equations (11), (15) and (16).

For Az = 0.1, fundamental solutions F(4,, n, {) and
G(4,, n, {) are generated for i = 0-5 using an 11 x 11
grid. Fundamental solutions for i = 6-10 can be read-
ily generated from the i = (~5 solutions using sym-
metry considerations. To illustrate the quality of the
numerical data, the heat flux and temperature dis-
tributions at the bottom wall for the six fundamental
solutions with L, = L, = 1.0 are presented in Tables
1 and 2. Based on tabulated values of S,(x)}(n = 1,4),
the computation is extremely efficient. Independent of
optical thickness, each of the six solutions is generated
with less than 1 min CPU time with a DEC VAX
11/780 computer. The accuracy of the computation is
also excellent. When the six fundamental solutions are
superposed to form a solution to the problem of unit
normalized emissive power over the whole bottom
wall, for example, the agreement with the reported

Table 1. Values of the fundamental solutions F(n, 0) for an
enclosure with L, = L, = 1.0

n
i 0 0.1 6.2 0.3 0.4 0.5

1 02576 0.0061 0.0044 0.0035 0.0028 0.0024
2 00136 0.5281 0.0162 00110 0.0085 0.0068
3 0.0097 0.0165 0.5300 0.0176 0.0120 0.0092
4 0.0077 0.0114 0.0177 0.5308 0.0182 0.0124
5 0.0063 0.0089 0.0122 0.0182 0.5312 0.0185
6 0.0052 0.007t 0.0094 0.0125 0.0185 0.5313

Table 2. Values of the fundamental solutions G, {n, 0} for an enclosure
withl; =L,=10

i 0 0.1 0.2 0.3 0.4 0.5

I 0.4854 -0.0120 —0.0087 —~0.0068 —0.0054 —0.0044
2 —~0.0222 09461 —0.0293 —0.0198 —0.0152 —0.0120
3 -0.0156 —0.0293 0.9422 -0.0318 —0.0216 —0.0164
4 ~0.0123 —0.0198 —0.0318  0.9405 —0.0330 —0.0224
5 ~0.0099 ~0.0151 —0.0216 —0.0330 09397 -0.0335
6 -0.0081 —0.0120 -0.0164 -0.0224 —0.0335 09395
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resuits [2, 6, 7} generated from other techniques is to
within 1%.

Compared to the point allocation technique utilized
in ref. [8], the present solution technique is more
efficient. Because of the presence of higher power
terms (11", {", n > 2) in the polynomial approximation
for the emissive power, the previous calculation
required extremely accurate evaluation (sometimes up
to 16 significant figures) of the exponential integral
function S,(x) for all values of n. The present tech-
nique, on the other hand, requires only six-figure accu-
racy for S,(x) with n < 4. The present technique can
be considered an extension of the conventional zonal
technique [10} ; but there are two differences. First, the
technique allows temperature variation within each
zone. Second, energy conservation as represented by
equation (11) is considered for a point in space instead
of for a finite zone. These two differences and the
availability of numerical values of S,(x) which were
tabulated in previous works, makes the technique a
‘differential zonal method’.

4. RESULTS

4.1. Case 1: hot diffuse bottom wall and three cold
diffuse walls

Results are generated for square enclosures with
different optical thicknesses (L, = L, = 0.1, 1.0, 5.0).
The bottom wall emissivity varies as (g, = 0.1, 0.5,
1.0). The other three walls are assumed to be either
black (g, = 1.0) or have the same emissivity as the
lower wall (g, = &,). Numerical data for the centerline
emissive power 6(0.5, {), the bottom wall heat flux
g:(n, 0) and the right wall heat flux g,(L,, {) are
presented in Tables 3-5.
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To demonstrate the general effect of surface emiss-
ivity on temperature and heat flux distributions, iso-
therms and . flux lines for some typical cases
(L| == Lz = 1.0, g9 =0.1, 1.0, gy = 0.1) are pl‘esentcd
in Fig. 3; only half the enclosure is shown due to
symmetry. As expected, temperature decreases as the
emissivity of the bottom wall decreases. Large tem-
perature slips occur at the hot-cold corner and can
even be seen at the centerline, Table 3. Independent
of optical thickness, temperature slip increases as the
emissivity decreases. This indicates that for any
optical thickness, approximations which treat radi-
ation as a no-slip diffusion phenomenon will have
significant error in predicting the heat flux and tem-
perature distribution near the hot—cold corner. Also,
the shape of the flux lines is quite insensitive to the
change in emissivity. This suggests that while the net
heat transfer decreases with the bottom wall emiss-
ivity, the ratio of the components of the heat flux
distribution is not greatly affected.

For cases of gray walls with the same emissivity,
results in Tables 3—5 show that reducing surface emiss-
ivity has the general effect of lowering the temperature
and heat transfer. The temperature and heat flux dis-
tributions become more uniform and the medium is
nearly isothermal. One interesting result is that the
bottom wall flux curve, Table 4, does not have a
maximum at the corner (7 =0) for enclosures
with small optical thickness and low emissivity
(o=8,=01LL,=01,10;e0=¢,=05L,=0.1).
This is due to the low emissivity and the small lateral
optical thickness. The low emissivity inhibits heat
transfer to the cold side walls due to increased reflec-
tion and reduced emission. The small lateral optical
thickness allows the highly reflective side walls to
inhibit the heat flux over a large portion of the emitt-
ing bottom wall. Energy is forced upwards instead of

Table 3. Centerline emissive power 8(0.5, {) for square enclosures (L, = L,) of varying
optical thickness, bottom wall has unit emissive power, emissivity (e,), other walls
cold, emissivities (z,)

¢
L, g &y 0 0.2 04 0.6 08 1.0
01 01 02719 02615 02529 02467 02429 0.2418
0.1 1.0 00533 00397 00295 00225 00177 00141
01 05 05 03707 03129 02674 02356 0.2152  0.2047
05 10 02630 01961 01457 01111 0.0873 0.069
1.0 10 05179 03864 02873 02192 01722 0.1373
0.1 01 02861 02664 02514 02398 02315 0.2263
0.1 1.0 0079 00539 00371 0.0256 00175 0.0106
10 05 05 04454 03471 02770 02258 0.1890  0.1617
0.5 1.0 0352 02430 0.1678 0.1161 0.0792  0.0480
1.0 1.0 06298 04329 03000 02080 0.1420 0.0860
01 01 0349 0.2921 02501 02171 01919 0.1736
0.1 10 01760 0.1069 0.0648 0.0378 0.0200 0.0061
50 05 05 06401 04386 03009 02030 0.1355 0.07%4
05 1.0 0596 03660 0.2237 0.1312 0069 0.021!
1.0 1.0 08280 05233 03227 0.1899 0.1009 0.0306

WE 338}
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Table 4. Bottom wall heat flux g,(n, 0) for square enclosures (L; = L) of varying
optical thickness, bottom wall has unit emissive power, emissivity (e,), other walls
cold, emissivities (g,)

n
L, & € 0 0.1 0.2 0.3 0.4 0.5
01 01 00760 00765 0.0767 00767 0.0768 00768
01 1.0 00998 00998 0.0997 00997 0.0997 0.0997
01 05 05 04138 04192 04210 04218 04222 04222
05 1.0 04958 04940 04930 04925 04921 04920
1.0 1.0 09834 09762 09725 09703 0.96%0 09686
0.1 0.1 00751 00755 00755 0.0755 00755 0.0755
0.1 1.0 00987 00979 0.0975 0.0972 0.0971 0.0970
1.0 05 05 0389 03840 03806 03782 03768 0.3763
0.5 1.0 04712 04522 04428 04373 04342 04333
1.0 1.0 08958 08275 0.7948 0.7758 0.7655  0.7622
0.1 0.1 00726 00711 00700 00694 0.0650 0.0689
01 1.0 00968 00921 00896 00882 00874 0.0871
50 05 05 03456 02993 02735 0.2588  0.2507  0.2482
05 1.0 04415 03563 03178 02964 0.2849  0.2813
1.0 1.0 0819 05660 04660 04142 03876 0.3793

Table 5. Right wall heat flux ¢,(1.0, {} for square enclosures (L; = L,) of varving
optical thickness, bottom wall has unit emissive power, emissivity (go), other walls
cold, emissivities (¢,)

”

L & & 0 0.2 0.4 0.6 0.8 1.0
0.1 0.1 0.0275 0.0263 0.0255 0.0249 0.0244 0.0235
0.1 1.0 0.0529 0.0419 0.0324 0.0248 00189 0.0143
01 05 05 01875 01610 0.1401 0.1234  0.1103  0.0959
0.5 1.0 02629 02074 0.1604 0.1226 0.0933 0.0705
1.0 1.0 05213 04091 03162 0.2417 0.1840 0.1390
0.1 0.1 00287 00267 00252 0.0241 00231 0.0214
0.1 1.0 0.0728 0.0530 0.0380 0.0268 0.0183 0.0110
10 05 05 02216 0.1733 0.1403 0.1148 0.0948 0.0724
0.5 1.0 0.3421 0.2408 0.1720 0.1213  0.0828  0.0497
1.0 1.0 0.6399 0.4328 0.3079 0.2170 0.1483  0.0891
0.1 0.1 0.0314 00273 0.0235 00204 0.0178 00140
0.1 1.0 0.1074 0.0653 0.0388  0.0226 0.0120 0.0039
50 05 035 02682 01706 0.l144 00766 00498 0.0248
0.5 1.0 04372 02324 0.1357 0078 00417 0.0137
1.0 1.0 0.7412 03452 0.1984 0.1143 0.0606 0.0199
sideways ; therefore the heat flux closer to the center  with

of the hot wall is greater.

To further illustrate the general effect of surface
emissivity on radiative heat transfer, results for the
average heat flux at the bottom wall, g ;.. and the
fractional heat transfer to the top wall, F,, for a square
enclosure (L, = L,) with identical emissivity at all
walls (g, = £,) are shown in Figs. 4 and 5. Math-
ematically, ¢;, . and F, are defined as

]
Gvaavg = L g;(n,0)dn a9
F, = Juau (20)
q{b,avg

H
Goravg = J; ‘I;(’?, L,)dn. @b

Figure 4 shows that the effect of decreasing emissivity
on the average bottom wall heat flux is similar to that
of increasing optical thickness. Multiple reflections
increase the effective path length and lead to a
reduction in the average heat flux. This effect is more
significant for systems with small optical thicknesses.
From Fig. 5, the fractional heat transfer decreases
with increasing optical thickness due to the insulating
effect of the medium. For L, > 0.5 the fractional heat
transfer decreases with increasing &,. For L, < 0.5the
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FIG. 3.8y = ¢, = 0.1; g, = 1.0, ¢, = 0.1. Isotherms (-+-) and flux lines (---) for L, = L, = 1.0.
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FiG. 4. Averaged bottom wall heat flux, gy, .., vs optical thickness, L, = L,, &, = ¢, varying.
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Fi1G. 5. Fractional heat transfer, F,, vs optical thickness, L, = L,, g, = ¢, varying.

fractional heat transfer increases with increasing &,.
This inversion occurs because increasing the emiss-
ivity increases the amount of energy available to be
absorbed by the side and top walls while the small
optical thickness allows more energy to be transferred
directly to the top wall, without intermediate absorp-
tion.

4.2. Case 2: unit heat flux at bottom wall and three
cold black walls

Solutions are generated from equation (9). For
square enclosures with black walls (L, = L, =0.1,
1.0, 5.0), numerical data for temperature and heat
flux distributions are presented in Tables 6-8. In Fig.
6 the centerline temperature distributions are
presented. It should be restated that the heat flux and
temperature distributions in the medium are indepen-
dent of the emissivity and temperature of the bottom
wall. Therefore, significant temperature slip can occur
even in the optically thick limit for this class of
problem. The effect of the change in optical thickness
on the temperature depends on position. For points
near the cold (top) wall, temperature decreases with
increasing optical thickness. For points away from
the cold wall temperature increases with increasing
optical thickness. The fall in temperature for points
near the cold wall can be attributed to increasing

Table 6. Emissive power distribution 6(y, {) for square
enclosures with a bottom wall that is black and has unit
normal heat flux, other walls black and cold

n
L, { 0 0.1 0.2 03 0.4 0.5

1.0 0.1169 0.1252 0.1320 0.1370 0.1402
0.1 0.5 0.1771 0.2044 0.2269 0.2436 0.2538
0.0 0.2656 0.5269 0.5307 0.5329 0.5342

0.1412
0.2572
0.5346

1.0 0.0737
1.0 0.5 0.1779
0.0 0.3622

0.0866 0.0960 0.1029 0.1070
0.2298 0.2675 0.2946 0.3109
0.7281 0.7718 0.7982 0.8128

0.1084
0.3164
0.8176

1.0 0.0219
50 0.5 0.1530
0.0 0.5422

0.0381
0.3034
1.4072

0.0507
0.4137
1.6936

0.0602 0.0662
0.4946 0.5440
1.8687 1.9669

0.0682
0.5607
1.9988

intermediate absorption as the optical thickness
increases.

4.3, Case 3: hot diffuse bottom wall, two cold diffuse
walls and an adiabatic side wall

Results generated for this case illustrate an inter-
esting and important fundamental difference between
radiative and conductive hieat transfer. In conduction
an adiabatic surface is a line of symmetry; this is
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Table 7. Heat flux distributions ¢,(, {) for square enclosures with a bottom
wall that is black and has unit normal heat flux, other walls black and cold

n
L, { 0 0.1 0.2 0.3 04 0.5
10 -—0.1430 —0.1230 —0.0976 —0.0677 —0.0347 0.0000
01 05 -02847 —0.2542 —0.2043 —0.1415 —0.0721 0.0000
0.0 -—0.5304 —0.0186 --0.0138 —0.0093 —0.0047 0.0000
1.0 -0.1126 —0.0981 -0.0783 —0.0545 —0.0280 0.0000
1.0 05 —0.3280 —0.2890 -0.2306 —0.1592 —0.0810 0.0000
0.0 -0.7396 —0.1487 --0.1091 —0.0720 —0.0358 0.0000
1.0 —0.0442 —0.0421 —0.0349 -—-0.0248 —-0.0129 0.0000
50 0.5 —0.3337 —0.3027 ~0.2431 —-0.1687 —0.0861 0.0000
0.0 -—1.1526 —0.4055 —0.2762 —0.1743 —0.0846 0.0000

Table 8. Heat flux distributions ¢;(n, {) for square enclosures
with a lower wall that is black and has unit normal heat flux,
other walls black and cold

n
L ¢ 0 0.1 0.2 0.3 04 0.5

1.0 0.3314
0.1 0.5 0.4306
0.0 1.0000

0.3633
0.5178
1.0000

0.3899
0.5919
1.0000

0.4101
0.6460
1.0000

0.4228
0.6782
1.0000

0.4270
0.6887
1.0000

1.0 0.2000
1.0 0.5 0.3207
0.0 1.0000

0.2388
0.4047
1.0000

0.2679
0.4762
1.0000

0.2893
0.5285
1.0000

0.3026
0.5597
1.0000

0.3070
0.5700
1.0000

1.0 0.0516
50 05 0.1343
0.0 1.0000

0.0923 0.1238
0.2234 0.2986
1.0000 1.0000

0.1475
0.3536
1.0000

0.1622
0.3866
1.0000

0.1672
0.3975
1.0000

not always the case in radiative heat transfer. To be
considered a line of symmetry in radiative heat trans-
fer, a surface must be both adiabatic and specular. The
left-hand-side solution for an enclosure with L, = 2.0,
L, = 1.0 and case 1 boundary conditions can thus
be interpreted as the solution to a square enclosure
L,= L, =10 with a hot diffuse bottom wall, cold
diffuse upper and left walls and a perfectly specular,
adiabatic right wall. This solution is different from
that with a diffuse adiabatic right wall. To illustrate
the difference, isotherms and flux lines for the diffuse
and specular adiabatic right walls are shown side by
side in Fig. 7. Clearly the diffuse-adiabatic right wall
enclosure does not have maximum temperatures at
the right wall, unlike the specular/symmetric right wall
enclosure. The flux lines are also much more curved
for the specular/symmetric case. This indicates a
larger portion of the total energy is transferred to the
left side wall in the specular/symmetric case. Lastly,
the temperature distribution is much sharper for the
diffuse-adiabatic wall; for the diffuse-adiabatic case
regions near the bottom wall are hotter and regions
far away are cooler. These results show that non-

diffuse behavior by the walls has a significant effect
on heat flux and temperature distributions.

5. CONCLUSIONS

Based on a superposition procedure, solutions to
problems of two-dimensional radiative equilibrium
in a rectangular enclosure with complex boundary
conditions are generated. The general effects of sur-
face emissivity, a heat flux boundary condition, and
an adiabatic specular/diffuse surface are illustrated
with numerical data.

For an enclosure with specified wall temperature (a
hot lower wall and three isothermal cold walls), the
general conclusions are given below.

(1) The medium temperature and heat transfer
decreases with decreasing emissivity at the bottom wall.
Significant temperature slips occur at the hot-cold
corner of the enclosure, independent of optical thick-
ness and increasing as emissivity decreases. The
medium temperature distribution is more uniform in
enclosures with low surface emissivity.

(2) For an enclosure with equal surface emissivity,
the heat transfer (as illustrated by F,, the fractional
heat transfer from the bottom surface to the top sur-
face) is a sensitive function of both optical thickness
and surface emissivity. F, decreases with decreasing
surface emissivity in the optically thin limit while
it increases with decreasing surface emissivity in the
optically thick limit.

For an enclosure with a uniform heat flux at the
bottom wall, the medium temperature is shown to
be independent of both the surface temperature and
surface emissivity of the bottom wall. Specification of
the heat flux and surface emissivity are required to
determine the surface temperature in a pure radiation
problem. Significant temperature slip is observed for
all optical thicknesses.

For an enclosure with an insulated boundary, it was
shown that the insulated boundary is not a plane of
symmetry unless it is also a specular surface. Sig-
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FIG. 6. Centerline temperatures for radiative heat transfer in an enclosure with unit normalized heat flux
at the lower wall.

nificant difference is observed in both temperature
distribution and heat transfer between results gen-
erated with an adiabatic specular boundary and those
generated with an adiabatic diffuse boundary.

The results presented are a small portion of the
many permutations of geometry, optical thickness

specular, adiabatic right wall

and surface boundary conditions that can be handled
with the method presented. For instance it is possible
to handle mixed boundary condition problems where
the emissivity, temperature or heat flux of a wall can
be a function of position. Many two-dimensional rec-
tangular enclosures can be analyzed with minimal

diffuse, adiabatic right walls

FiG. 7. Specular, adiabatic right wall ; diffuse, adiabatic right wall. Isotherms (-+-) and flux lines (---) for
Li=L,=10,¢e,=1.0,¢, =0.1.
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effort once the fundamental solutions are generated
and stored. The storage requirements using (11 x 11)
grids for seven different enclosures are well under 1
megabyte. This method can also be extended to
analyze three-dimensional enclosures.
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APPENDIX: EVALUATION OF A, ,.., AND 8,,

Aty = 0and { = 0, evaluation of the integrals in equation
(I1) over a rectangular N+1xN+1 grid can be written
as sums of integrals over each of the rectangular elements.
Specifically, let

Nma(Lh Lh A’” A()

r ro.
- J J(’w-} F(A"Z','c"s ¢'L—25m ¢)S (rdrdd (AD)

be an integral over a rectangular element bounded by the
fOl%f' Qomts (ﬂm) Cn)s ('fns c~+ |)! (”m+h ;n) and (mm)‘ i Cn+ l)-
Utilizing equation (17), it can be readily shown that evalu-
ation of N,,, requires the following four integrals:

Hoo= j Lw 5.()drd¢ (A2)
Hip= “:M Si(ryrcos¢drdd {A3)
Hy, = j _[M S,(P)rsin pdrdg (A%)

H, = J Lﬁ’ S\(Dricospsingdrdg.  (AS)

Utilizing the recursive relation for S,(r), the above four
integrals can be simplified into a single integral in ¢. Hy,,
for example, becomes

#
H&,=L s,(’;;:‘:‘)d«» f ("“;’,:;’A‘) a

[ (e
where

By =tan"! E(%??A!})TSE (A7)

o B

B = tan~" Z‘l’"‘z (A9)

Bi=tan" W (Al0)

All integrals required in the evaluation of equation (A6) and
analogous expressions for H, ,, H, cand H, , are of the form

G %, )

- yix
- x*_[:" T Sneiasoslxsecd) tan' dcos -t  dg.
(AlD)

Previous works [7, 8] utilizing the properties of S,(x), evalu-
ated the above integrals with little effort. In terms of the
function G, . (x, »), H,,(i, j =0, ) can be written as



914

Hiy = ML m+ D, LTl ~ M {Lmdn, LnAl]
— ML (m+ DA, L+ DAT+ ML mn, Lo+ D]
(A12)
with
i+ (j4 i)
My = 3 CL G0 )+ G0,

k=0
(Al3a)

Since G, (0, 0) is undefined, M,;(0, 0), which is required
in the evaluation of equation (A12) when m=n=20, is
interpreted as

M, ;(0,0) = 3133 M, ;(0,0). (A13b)
Using equation (17), N,,.(L., Lj, An, A]) can be written as

Nm.n(leLZ!A”v AD = P&gFmﬁ+P2;leFm,n+l

+P,:,“2F,,,+|,,+P,:,'},Fm+ las+1 (Al4)
where
P20 = (1+m+n+mn)H,o— (1+n) Hio
mn 3 LIA"
Ho.l Hl.l
A+m) e+ Tianat AP
H
o - _ 1.0
P (m+m")H“°+(l+n)L,An
mH, , H,,
+Tar " LiLana; (A1
H
P = —(n+mn)Ho‘o+(l+m)—L—::’s—'c
nH,, H,,
ekt~ L A " NN T ¥
Lan~ LLaar A1
i __"Hl.o_mHo.l H,,
Pria =mnHoo= gt~ AL, T LLAMA
(A18)

By a simple coordinate transformation, the above results can
also be applied to the evaluation of an integral over
a rectangular element with respect to an arbitrary point
(nh C)'

The coefficients A, ;ma can now be evaluated in terms of
P.,. The specific relations are

W. W. YueN and E. E. TAKARA

Aijmn=4P33, m=in=j (A19a)
Aijma =2P30_j+P3s 1), m=i  (Al9)
Aijmn = 2P0+ Prlii), n=j (Al9c)
Aijmn = P,‘,’;f,,._,+P,:;2,_ LA~y
FPY Py (A19d)
whenm # 0, Nandn #0, N;
Aiymn =2P35, m=in=j (A20a)
Aijma = 2P%) .\, m=i (A20b)
Aijma=Polio+ P32 100 n=j (A20¢)
A jmn = Prlin s 4 Pl vacjr (A20d)
whenm#0, Nandn =0, N;
Ayma=2P33, m=in=j (A21a)
Aijmn = Py, 4Py, m=i (A21b)
Aijmn =2Pu2 10, B=j (A2ic)
Aiprn = PEinejt Paticinnjmn (A21d)
whenm =0, Nandn # 0, N;
Aijma =P335, m=in=j (A22a)
Aijmn = Pln_jory m=1i (A22b)
Aijmn =Puli10, n=j (A22c)
Aijmn = Pliovasjms (A22d)

whenm =0,Nandn #0, N.

The above coefficients are applicabie for all fundamental
solutions. B;,, on the other hand, varies for the different
fundamental solutions. For F(4, n, {), B,, is given by

By, = Gooo(L2fAL, Ly(Aiy 2 — i)
~Go00(L2jAL, Li(4imy2—iBn)). (A23)

After equation (18) is solved, the fundamental heat flux G(4,,
1, {) can be generated from equations (15) and (16) utilizinga
similar procedure for the evaluation of the required integrals.

It is important to emphasize that evaluation of the function
G, 4(x, y) is the only required numerical integration in the
present solution procedure. As demonstrated in previous
works [7, 8], G,,.(x, y) satisfies a set of recursive relations.
For the few integrals which need to be evaluated numerically,
the computation generally requires little effort.

TECHNIQUE DE SUPERPOSITION POUR L'EQUILIBRE RADIATIF DANS DES
CAVITES RECTANGULAIRES AVEC DES CONDITIONS AUX LIMITES COMPLEXES

Résumé—On utilise la superposition des solutions fondamentales pour trouver les distributions de flux
thermique et de température dans des cavités rectangulaires bidimensionnelles 4 parois grises avec un milieu
gris absorbant et émissif, 4 diffusion isotrope. Les solutions fondamentales concernent les cavités avec des
frontiéres noires et un changement d’échelon de température sur un intervalle fini de paroi. Elles sont
obtenues en utilisant une variation de la méthode conventionnelle de zonage. Des distributions fines de flux
thermique et de température pour les cas typiques sont présentées pour illustrer la simplicité de la procédure
de superposition. Sur la base de ces résultats, on discute les effets des conditions aux limites sur la
distribution de température et de transfert de chaleur.

UBERLAGERUNGSMETHODE FUR STRAHLUNGSGLEICHGEWICHTE IN
RECHTECKIGEN RAUMEN MIT KOMPLEXEN RANDBEDINGUNGEN

Zusammenfassung—Die Uberlagerung von Grundgleichungen wird angewendet, um Temperatur- und
Wirmestromverteilungen in rechtwinkligen zweidimensionalen Riumen mit grauen Winden und einem
grau strahlenden, isotrop streuenden Medium zu berechnen. Als Lésung ergeben sich Temperatur- und
Wirmestromverteilungen fiir Riume mit schwarzen Winden und in einem endlichen Wandabschnitt
stufenweise verinderte Temperaturen. Dabei wird eine Variation der Gblichen Zonen-Methode ange-
wandt. Detaillierte Wirmestrom- und Temperaturverteilungen werden fur grundlegende Fiille vorgestelit,
um die einfache Anwendbarkeit der Uberlagerungsmethode zu zeigen. Von diesen Ergebnissen ausgehend,
wird der EinfluB der Randbedingungen an der Oberfliche auf die Temperatur- und Wirmestrom-
verteilung diskutiert.



Superposition technique for radiative equilibrium

HCTIOABIOBAHHE METOJA CYTIEPTIOSMLIMH VLA PAAMALMOHHOIO
PABHOBECHA B MPAMOYTONBHBIX NNOJOCTAX CO CIOKHBIMH CO CIIOXHBMH
TPAHUYHBIMHY YCIIOBHAMH

Ammoramges—J{n OUpERENCHES PRCHPENCNCHN TEMOCPATYD M TEWIOBMX MOTOKOB B ABYMEPHMX nps-

TOJIOCTAX ¢ %CPHWMHE TPANNIAME B CXaYX000DAdHLDM H3MCHCHMCM TEMOCDATYPH HR OFPAHNTCHHOM

yuacTRe crenxH. OHE DOJNYWCHM BapLEPOBAHMEM OGMYHOTO 30HAMMHOrO MeTond. Jlas RAMOCTpanEHE

TPOCTOTH MCTORR CYNCPUOSHINE TPCACTABICHH NOAPOGHMC PACHPEAC/ICHES TCILAOBLX HOTOKOS N TCM-

nepatyp. Ha ocHOBe famHMX pe3yinTaTod OOCYRAACTCE BIMAHKE IDAHHYHLIX YCHOBHH HA pacupeneic-
HHE TEMIIEPATYP B TEILIONEPEHOC.
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