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A~-Su~~ition of f~darnen~ solutions is used to Bnd temperature and heat flux d~t~butioas in 
gray wailed ~~~~ional rectangular enclosures with a gray a~rbi~ttin~ isotropicalIy scattering 
madium. The fundamental solutions are temperature and heat flux distributions for enclosures with black 
boundaries and a step changs in tcmpcraturc over a finite wall interval. They are found using a variation 
of the conventional nonal method. Dctailad heat flux and temperature distributions for basic cases are 
presented to illustrate the simplicity of the superposition procedure. Based on these results, the efkcts of 

surface boundary conditions on the temperature distribution and heat transfer are discussed. 

1. INTRODU~~ON 

THE IMPORTANCE of radiative heat transfer in many 
engineering systems is well known. Until recently, 
quantitative illustration of these effects has been 
difficult because of the mathematical complexity of 
radiative heat transfer. In many practical problems it 
is necessary to analyze radiative heat transfer in a 
multidimensional enclosure with reflecting and emit- 
ting boundaries. The tem~ratu~ might be specified 
on some surfaces, while on others the heat transfer 
rate or a heat transfer coefficient might be given. The 
problem of radiative equilibrium in a twodimensional 
rectangular enclosure has been solved many times [l- 
91. One widely used analysis technique is the zonal 
method described in ref. [IO] and its variations, as in 
refs. [4, 6, 7]. The other widely used family of tech- 
niques is the differential methods [l-3]. Regardless of 
the method used there is a facet of this problem which 
has been largely neglected ; in the absence of con- 
duction and convection, radiation is a linear process. 
Therefore, the method of superposition can be used 
to find solutions to problems with complex boundary 
conditions. 

Previous works [l-9] solved for the temperature 
and heat &IX distributions for basic enclosures with 
one ‘hot’ wall, a wall at unit temperature, and three 
cold walls, walls with xero temperature. The tem- 
perature and heat flux distributions for more complex 
enclosures with more than one ‘hot’ wall are found by 
superimposing the distributions of the basic 
enclosures. This is inefficient because nearly identical 
distributions must be generated if the wall emissivities 
change or boundary conditions become complicated. 
Modest f 1 If and Crosbie and I&wing [12] used a 
more sophisticated superposition technique, similar 
to the one presented in this work, to analyze two- 

dimensional plane layers. The total exchange area 
method described by Hottel and Saroflm [IO] and its 
variants (13, 141 is another advanced superposition 
technique; however, it has the computational in- 
efficiency of refs. [l-9]. The advantage of the total 
exchange method is that it is valid even in multi-mode 
heat transfer. Direct superposition is not valid in these 
non-linear situations so either the total exchange 
method or others as in refs. [15-lg] must be used for 
solution. 

In multi-~mensional enclosures with reflecting 
boundaries and/or heat flux boundary conditions sur- 
face radiosity, not surface temperature or heat flux, is 
the ‘natural’ boundary condition. The radiosities, not 
the temperature or heat flux, must be superimposed. 
Although the previous works [l-9] implicitly super- 
impose the radiosities, they do not take advantage of 
the possibility that the radiosities themselves can be 
obtained through superposition. This is a major limi- 
tation; in this work a superposition procedure based 
on surface radiosity is developed. The radiosity at a 
diffusely reflecting surface is a function of both its 
temperature and heat flux. Since one of these is 
unknown, a system of integral equations has to be 
solved to generate the heat flux and temperature dis- 
tributions. 

The remainder of this paper is organized in three 
sections. First, the superposition procedure will be 
illustrated mathematically. For a rectangular enclos- 
ure, the fundamental solutions which are required 
for this superposition procedure will be identified. 
Second, a solution method which is extremely e!Ilcient 
in generating these fundamental solutions will be 
described. The method is a generalization of a tech- 
nique which has been shown to be effective [7,8, 17] 
for two-dimensional radiative heat transfer with btack 
isothermal boundaries. Finally, solutions for selected 
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4./m- coefficient defined by equation (18) q( y, z) heat flux vector 
and derived in the Appendix 

? 
heat flux in direction normal to wall 

B coethcient defined by equations (18) and 
” (A23) 

radial coordinate used in equations (I I), 
(IS) and (16) and Fig. 2 

f(&, Lz, 2, Y, 21, f’(&, Lz, 1, Y. 2) functions S,(ux) exponential integral function, 
defined by equation (4a) (2-00 f? (exp(-aJ(r*+x*N/ 

F(& y, 2). F((&v y, Z) functions defined (r*+x*)“‘@+‘))dr,u,r 20; n = 0 1 , ,-‘. 
by equations (7a) and (7b) Y coordinate 

F JV,, f, iJ 
g;;, y, t), g*(&, y, z) 

Y dimension of enclosure in the y-direction 
heat flux vectors the z coordinate 

components gu, g,, g$ g: of which are Z dimension of enclosure in the z-direction. 
defined in equations (4b) and (4~) 

G(&, y, z), G’(d,,,, y, z) functions defined Greek symbols 
by equations (8a) and (Sb) B, angles defined by equations (A7)-(AlO) 

C~Sj~(x,y) function defined by equation E emissivity 

(All) J. integration variable used in equations 
Hii parameters defined by equations W-+W and @XW 

(A2XA8 rl nondimensional coordinate in the 
J(y, z) surface radiosity y-direction, y/Y 

K extinction coefficient I nondimensional coordinate in the 

L, optical thickness in the y-direction, K, Y z-direction, z/Z 

J-2 optical thickness in the z-direction, K,Z 6 emissive power 
M&y) function defined by equation @W emissive power of wall 

(A131 # angular coordinate used in quations 
N 
pz 

function defined by equation (Al) (ll), (15) and (16) and Fig. 2 
parameters defined by equations $1 angle de&d by equation ( 13) 
(AU)-(AH) 42 angle defined by equation (14). 

enclosures will be presented to illustrate the effbctive- 
ness of the present solution technique. 

While the present approach can be readily applied 
to an enclosure with arbitrary surface emissive power 
and emissivity (or heat flux) distribution, only three 
specific cases are presented to illustrate the general 
effect of surface emissivity and heat flux boundary 
conditions on multi-dimensional radiative heat trans- 
fer. In the first analysis, the walls are assumed to be 
diffusely reflecting and emitting with the bottom wall 
an isothermal surface with unit emissive power, other 
walls cold. In the second case, the bottom wall is 
assumed to be black, nonisothermal with constant 
unit heat flux and the other walls black and cold. 
Lastly, the case of an isothermal bottom wall in com- 

zaque [18] in 1987, for combined conduction and radi- 
ation heat transfer. The last analysis reemphasizes 
the importance of boundary conditions, the difference 
between specular and diffuse reflection in multi- 
dimensional radiative heat transfer. 

2. SUPERPOSITION PROCEDURE 

Consider a rectangular enclosure with a coordinate 
system as shown in Fig. 1. All boundaries arc assumed 
to be diffusely emitting and n&c&g surfaces. From 
standard references 110, 201, it can be readily shown 
that the radiosity at the boundary is given by 

bin&on with two cold walls and one adiabatic dif- 
fusely reflecting or specularly mflecting side wall is con- 
sidered. These cases are selected because solutions to 
the first analysis have been reported by other inves- 
tigaton 12-4, 61. The efficiency and accuracy of the 
present approach can be seen in direct comparison, 
The second analysis demonstrates the ease of applying 
the present technique to enclosures with heat flux 
boundary conditions. Though less common than tem- 
perature boundary conditions, there is literature in 

- 
v 

this area from Gebhart [19J in 1961, for enclosures 
with non-palliating media, to Sokmen and Raz- 

FIG. 1. Geometry and coordiite system for the two-dimen- 
sional en&sure. 
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where s is a coordinate measured along the boundary, 
@,(s), E(S) are the emissive power and emissivity of 
the boundary at J and q.(s) is the radiative heat ff ux 
in the direction normal to the boundary. Using qua- 
tion (1) the boundary radiosity J(s) for an enclosure 
with temperature boundary conditions can be found 
using supetposition, This can be seen as follows. 

(1) For an assumed boundary. radiosity distri- 
bution, J(s), the temperature and heat flux dis- 
tributions in the medium can be found. Therefore, 
equations for the temperature and heat flux dis- 
tributions can be derived in terms of an unknown 
radiosity distribution J(s). 

(2) The expressions for surface heat ffux q.(s) and 
the given boundary condition 6,(s) can be substituted 
into equation (1). The result is a set of equations for 
the unknown radiosity distribution J(s). 

For heat flux boundary conditions the same reasoning 
applies. The expressions for surface heat flux q.(s) are 
equated to the given boundary condition q.(s). 

2.1. Case 1: hot di$ute bottom wall and three cold 
dijfu walls 

In this case, the bottom wall is assumed to be gray 
and hot with B(y, 0) = 1.0 and emissivity so and the 
other three walls cold with @(y, 2) = @(O, z) 9~ 
(I( Y, z) = 0 and emissivity e I. Equation (1) becomes 

l-6* 
J(y,O) = l.O- - E. %.(Y, 0) 

I-E, 
JlYt 2) = - $, atuta 

1-8, 
J(O,z) = -- $, artw 

and 

J(0, 2) = J( Y, 2). 

To generate a set of integral quations for the 

related as follows : 

f’(LLtAY,Z) =.f&,~1,5~*Y) W 

g;&,L&y,~) =~,(~,,&,&.GY) (W 

flW,,L*r&Y.Z) ““l7y(~21&rhY). (3c) 

The emissive power @(y, r) and heat flux q(y, z) for 
a problem wit& arbitrary radiosity J(y, z) at the 
walls can be readily generated from these solutions by 
superposition. The specifn relations are 

+ s ~=&[1’tL,,L,,~, Y-y,z&W’,i.)di. tw 

unknown radiosity dis~bution, two sets of fund- 
amental solutions are introduced. Specifically, f&r, 
L2, i, y, z) and p(L,, Lz, A, y, z) are the emissive 
power and heat flux distributions for a rectangutar 
enclosure with a gray medium and black walls. The 
bottom wall (z = 0) is ‘hot’ with unit emissive power 
from y = 0 to 1; the remainder of the bottom wall 
and the other three walls are ‘cold’ with xero emissive 
power. These f~~~~l solutions are used to 
account for the rnon-zero’ boundary conditions of the 
top and bottom walis (z = 0 and 2). To account for 
the ‘non-zero* boundary conditions at the two side 
walls (y = 0 and Y), the functions fl(L,. L, A, y, z) 
and g’(L,, L2, 1, y, z) arc introduced. They are 
the emissive power and heat flux distribution for an 
enclosure which has a ‘hot’ side wall ( y = 0) with unit 
emissivc power from I = 0 to A the remainder of the 
wall and the other three walls ‘cold’ with zero emissive 
power. The two sets of fundamental solutions are 

+ 5 d~~g~tL,,L2,i,y,z)ll(o,a)da 

Substituting quations (4b) and (4~) into equations 
(2a)-(2e), one obtains 
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+ ;[g:(L,. Ll,A, Y-y, Z)] (5b) 

J(O,z)= - 3 

+ I . :~[~,(L,,L,,~,O,Z-I)]J(~,Z)~~ 

- $[gW+,, LA Y,dl . (54 

Since analyticat solution to this class of problems is 
extremely unlikely, it is useful to express equations 
(5a)-(5c) as numerical quadratures. These equations 

+ f [GltL~,L~,k,j,y,o) 

j- I 

+ GLtL I, L Ax.,, Y-Y, WJtO, /I,.,) t6af 

(W 

(W 

t7b) 

@a) 

@W 

and 
A:,/ = jdl,. Physically, F(&, y, z) and CC&,,, y, z) 
can be interpreted as the emissive power and heat flux 
distribution in a black enclosure with a unit emissive 
power between y = &- AA,/2 and y = .& + AJ.,/Z at 
the bottom wall. F(I,,, y, z) and G’(lr,i~ _Y, z) can 
be interpreted as the emissive power and heat flux 
dist~bution in a black enclosure with a unit emissive 
power between z = l,j-A1,/2 and z = &j+M1/2 at 
the side wall. Evaluating equations @a)-(6c) at the 
discrete points 

and 
(O,jAl:) j = 0,. . . , M 

a set of 2N+M+3 equations are readily generated 
and solved for the unknown radiosity distributions. 
Half elements are used in the comers. The super- 
position is clearer when N = M. 

2.2. Care 2 : unit heat J?UX at bottom wall and three 
cold black wanly 

In a general case the discretized forms of equations 
(4b) and (4c) are equated to the given boundary fluxes. 
For a unit heat fiux at the lower wall and remaining 
walls cold (0, = 0) and black, the governing equation 
is 

The radiosity at the three cold, black boundaries is 
zero. Note that J(&, 0) is independent of the surface 
emissivity E* Because they are dependent only on the 
surface radiosity J(~,,~i, 0) (equations (4a)+k)), the 
temperature and heat flux distributions within the 
medium are also independent of surface properties. 
We can conclude that in an enclosure with only heat 
flux and cold black wall (zero radiosity) boundary 
conditions, the temperature and heat flux distri- 
butions are independent of the surface properties of 
the flux wails. This is known for the surface radiosities 
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of enclosures with non-participating media 110, 19, Because of symmetry, results generated in case 1 

201. for an enclosure with optical geometry 2L, x L2 are 

2.3. Case 3 : hot dt@hse bottom wail, two cold d@hse 
equivalent to those for an enclosure with optical 
d 

walls and adiabatic side wall 
tmension L, x L2 with a perfectly reflecting specular 

In this case, the boundary conditions at the top, 
side wall. A direct comparison with results generated 

bottom and left side wall ( y = 0) are identical to those 
by case 3 readily illustrates the difference between 

of case 1 while the right side wall (y = Y) is diffuse 
specular and diffuse reflection in twodimensional 
radiative heat transfer. 

and adiabatic. The governing equations are 

-,i, GAL,, L2rAy.,,ytZ)J(~.“.j,Z) 

f 2 G:lL,,L,,d:.j,y,O)JtO,~~.j) 
I- 1 

+ f G:&,L,,&.j, Y-y,O)JtY,;I,,) 
/- 1 

J(Y, Z) 

+ 5 G:(L,,L2rS.,,O,z)JtO,~r.j) 
I- i 

- f, G~tLt*&r;jt.p Y,z)JtY,rtZ.j) 
I- 1 

0 = ,$, GytL I 9 La &,, K z>JtJy.,, 0) 
m 

+ i G,tL L &.y.i, Y, Z-z)Jtrt,,, z) 
I- I 

+: G:LLd:.,, Y,dJ(Q,&.,) 
f-1 

-: G:tL,,L,,~~,,,O,z)JtY,I.,). 
I- 1 

3. FUNDAMENTAL SOLUTIONS 

An enclosure with a gray, absorbing-emitting, iso- 
tropically scattering medium in radiative equilibrium 
is identical to an enclosure with the same optical 
geometry with a medium that does not scatter. This 
can be seen from ref. [lo] where it was shown that 
For an isotropic medium in radiative equilibrium the 
volume~c radiosity is qua1 to the black body emis- 
sive power. An enclosure with a gray, absorbing- 

(lOa) emitting, isotropically scattering medium can be 
analyzed with the tonal techniques used for a gray, 
absorbing-emitting medium. The method of solution 
developed in previous works [7,8, 17j is now used to 
generate the fundamental solutions F(A,, y, z) and 
the associated heat flux distribution G(1,, y, z). The 
functions F(A,, y, L) and Cc&, y, z) can be generated 
from equations (3a) to (3~). In terms of a ‘polar’ 
coordinate introduced in the previous work [7& the 
governing integral equation for F(& y, z), the volu- 
metric radiosity or the black body emissive power, is 

wn 
Note that equation (1Od) is generated from an equa- 
tion with the same form as equation (lob) or (1Oc) 
with e = 0 ; this was used in ref. [IO] to model adiabatic 
walls. 

and 

L I = K,Y, L2 = K,Z (12) 

+, _ tan_, L&y;-lt) 
(13) 

2 

$2 E tan_, r,y2-rl) 
(14) 

2 

K1 is the extinction coefficient of the medium. The heat 
flux expressions are 
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$ tsin@ S,(r)sin$drd# 
2 ) 

*t 
+ 

I, 
~~(~*~~#)~s~d#. (16) 

The region of integration (r, #) for the above double 
integrations at a given (q, C) is illustrated by Fig. 2. 

Unlike the previous work [8], the fundamental soiu- 
tions will not be generated by a point allocation 
method in which a single polynomial is used to rep- 
resent the radiosity over the whole enclosure. For 
improved computational efficiency and accuracy, the 
rectangular enclosure is broken into a finite 
N+i xNfi grid with the nodal temperature 
FM = F(& q,,,, J,) where I,,, = m Aq, [,, = nA(, with 
m, n = 0, N and Aq = AC = i/N. Within each rec- 
tangular element bounded by the four points (a,,,, I,), 
(G,, 6, ,), (Q,,+ Ir 6) and elm+ I9 L+ ,I. the emissive 
power distribution is assumed to be given by the foi- 
lowing linearized expression : 

F 
f 

n.n+ I 
- Fma ((+A{) 

Ai 

F 
+ 

m+ ~a+ I +Fnur-Fm+ [n-F,,+ I tq_mAqxc_nAC) 

J%4 

07) 

Substituting equation (17) into equation (ii) and 
evaluating at (Q, c,), a set of N+ 1 x N+ 1 algebraic 
equations for the unknown nodal temperatures can 
be generated as follows : 

#WI-N 

i,j=O, I,..., N. (18) 

Detailed expressions for A,j,, and BLj are given in 
the Appendix. In general, these coefficients are ex- 
pressions involving single integrals of the general ex- 
ponential integral function S,(x) which have been 
studied extensively in previous works [7, 81. 

~L,rl~L‘wl)4 

f 
L*U-l) 

t 
L2e 

- 
FIG. 2. Domain of integration and the ‘polar’ coordinate 

system used in quations (I I), (I 5) and (16). 

For Ad = 0.1, fundamental solutions F(&, q,J) and 
G(&, q, C) are generated for i = O-5 using an 11 x 11 
grid. Fundamental soiutions for i = 6-10 can be read- 
ily generated from the i = O-5 solutions using sym- 
metry considerations. To illustrate the quality of the 
numerical data, the heat flux and temperature dis- 
tributions at the bottom wail for the six fundamental 
solutions with L, = Lt = 1.0 are presented in Tables 
1 and 2. Based on tabulated values of S,(x)(n = 1,4), 
the computation is extremely efficient. independent of 
optical thickness, each of the six solutions is generated 
with less than 1 min CPU time with a DEC VAX 
1 i/780 computer. The accuracy of the computation is 
also excellent. When the six fundamental solutions are 
superposed to form a solution to the problem of unit 
normalized emissive power over the whole bottom 
wall, for example, the agreement with the reported 

Table 1. Values of the fundamental solutions F,(q, 0) for an 
enclosure with L, = L2 = t .O 

9 
i 0 0.1 0.2 0.3 0.4 0.5 

: 0.2576 0.0136 0 Ok281 0061 0 O:Ot62 MM4 0 0:OllO 0035 0 0:OOSS 0028 0 Ok068 0024 

3 0.0097 0.0165 0.5300 0.0176 0.0120 0.0092 
4 0.0077 0.0114 0.0177 0.5308 0.0182 0.0124 
: 0.0063 0.0052 00089 0:0071 00122 Ok094 00182 0:0125 0:OlSS 05312 0:5313 00185 

Table 2. Values of the fundamentit solutions G&, 0) for an enclosure 
with Li = L* = 1.0 

rt 
i 0 0.t 0.2 0.3 0.4 0.5 

t 0.4854 -0.0120 -0.0087 -0.0068 -0.0054 -0.0044 
2 -0.0222 0.946 t -0.0293 -0.Ot98 -0.0152 -0.0120 
3 -0.0156 -0.0293 0.9422 -0.0318 -0.0216 -0.0164 
4 -0.0123 -0.Ot98 -0.0318 0.9405 -0.0330 -0.0224 
5 -0.0099 -0.0151 -0.0216 -0.0330 0.9397 -0.0335 
6 -0.0081 -0.0120 -0.0164 -0.0224 -0.0335 0.9395 
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nsutts [2,6,7] peratcd from other techniques is to 
within 1%. 

Compared ta the point allocation technique utilized 
in ref. [S], the present solution technique is more 
efficient. Because of the presence of higher power 
terms (@, r, n > 2) in the polynomial approximation 
for the emissive power, the previous calculation 
required extremely accurate evaluation (~metim~ up 
to 16 signScant @tires) of the exponential integral 
function S,(x) for all values of n. The present tech- 
nique, on the other hand, requires only six-figure accu- 
racy for S,,(x) with n Q 4. The present technique can 
be considered an extension of the canventional zonal 
technique [lo]; but thereare two differences. First, the 
technique allows temperature variation within each 
zone. Second, energy conservation as represented by 
equation (11) is considered for a point in space instead 
of for a finite zone. These two differences and the 
availability of numerical values of S.(x) which were 
tabulated in previous works, makes the technique a 
‘differential zonal method’. 

4. RESULTS 

4.1. Case 1: hot dijiie bottom wall and three cold 
d_&se walls 

Results are generated for square enclosures with 
different optical thicknesses (I_., = L2 = 0.1, 1.0,S.O). 
The bottom wall emissivity varies as (so = 0.1, 0.5, 
1.0). The other three walls are assumed to be either 
black (8, = 1.0) or have the same emissivity as the 
lower wall (8, o= E,,). Numerical data for the centerline 
emissive Rower fI(0.5, I), the bottom wall heat flux 
q&q, 0) and the right wall heat flux qV(L,, 0 are 
presented in Tables 3-5. 

To demonstrate the general effect of surface etniss- 
ivity on temperature and heat flux distributions, iso- 
therms and - flux lines for some typical cases 
(t, - L2 = 1.0, e. = 0.1, 1.0, .sl = 0.1) are presented 
in Fig, 3 ; only half the enclosure is shown due to 
symmetry. As expected, temperature decreases as the 
emissivity of the bottom wall decreases, Large tem- 
perature slips occur at the hot-cold corner and can 
even be seen at the centerline, Table 3. Independent 
of optical thickness, temperature slip increases as the 
emissivity decreases. This indicates that for any 
optical thickness, approximations which treat radi- 
ation as a no-slip diffusion phenomenon will have 
significant error in predicting the heat flux and tem- 
perature distribution near the hot-cold corner. Also, 
the shape of the gux lines is quite insensitive to the 
change in emissivity. This suggests that while the net 
heat transfer decreases with the bottom wall emiss- 
ivity, the ratio of the components of the heat flux 
distribution is not greatly affected. 

For cases of gray walls with the same emissivity, 
results in Tables 3-5 show that reducing surface emiss- 
ivity has the general effect of lowering the temperature 
and heat transfer. The temperature and heat fiux dis- 
tributions become more uniform and the medium is 
nearly isothermal. One interesting result is that the 
bottom wall flux curve, Table 4, does not have a 
maximum at the corner (g = 0) for enclosures 
with small optical thickness and low emissivity 
(&o=&,=0.1,L,=0.1,1.0;E~=E,=0.5,L, =O.l). 
This is due to the low emissivity and the small lateral 
optical thickness. The iow emissivity inhibits heat 
transfer to the cold side walls due to increased reflec- 
tion and reduced emission. The small lateral optical 
thickness allows the highly reflective side walls to 
inhibit the heat flux over a large portion of the emitt- 
ing bottom wall. Energy is forced upwards instead of 

Table 3. ~~li~~i~~ power fi(o.5, Q for square edosures (L , = ~3 of varying 
optical thickness, bottom wall has unit cmissive power, emissivity (Q,), other walls 

cold, emissivities (8,) 

c 
L, -% El 0 0.2 0.4 0.6 0.8 1.0 

0.1 0.1 

0.1 2: ;I: 
0:s 1:o 
1.0 1.0 

0.1 0.1 
0.1 1.0 

1.0 0.5 0.5 
0.5 1.0 
1.0 1.0 

0.1 0.1 
0.1 1.0 

5.0 0.5 OS 
0.5 1.0 
I.0 1.0 

0.2719 0.2615 0.2529 
0.0533 0.0397 0.0295 
0.3707 0.3129 0.2674 
0.2630 0.1961 0.1457 
0.5179 0.3864 0.2873 

0.2861 0.2664 0.2514 
0.0794 0.0539 0.037 1 
0.4454 0.3471 0.2770 
0.3562 0.2430 0.1678 
0.6298 0.4329 0.3000 

0.3490 0.2921 
0.1760 0.1069 
0.6401 0.4386 
0.5906 0.3660 
0.8280 0.5233 

0.2501 
0.0648 

:z 
013227 

0.2467 0.2429 
0.0225 0.0177 
0.2356 
0.1111 
0.2192 

0.2152 
0.0873 
0.1722 

0.2398 0.2315 
0.0256 0.0175 
0.2258 0.1890 
0.1161 0.0792 
0.2080 0.1420 

0.2171 0.1919 0.1736 
0.0378 0.0200 0.0061 
0.2030 0.1355 0.0794 
0.1312 0.0696 0.0211 
0.1899 0.1009 0.0306 

0.2418 
0.0141 
0.2047 
0.0696 
0.1373 

0.2263 
0.0106 
0.1617 
0.0480 
0.0860 
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Tabk 4. Bottom wail heat flux q&, 0) for square encksures (Li = L& of varying 
optical thickness, bottom wall has unit emissivc power, emissivity (a.), other walk 

cold, emissivities (a J 

It 
L, so st 0 0.1 0.2 0.3 0.4 0.5 

:: 
0:s 

0.1 1.0 0.0760 0.0998 0.0765 0.0998 0.0767 0.0997 0.0997 0.0767 0.0768 0.0997 0.0768 0.0997 
0.1 0.5 0.4138 0.4192 0.4210 0.42 18 0.4222 0.4222 

0.5 1.0 0.4958 0.4940 0.4930 0.4925 0.4921 0.4920 
1.0 1.0 0.9834 0.9762 0.9725 0.9703 0.9690 0.9686 

0.1 0.1 0.075 1 0.0755 0.0755 0.0755 0.075s 0.0755 
0.1 1.0 0.0987 0.0979 0.0975 0.0972 0.0971 0.0970 

1.0 0.5 0.5 0.3869 0.3840 0.3806 0.3782 0.3768 0.3763 
0.5 1.0 0.4712 0.4522 0.4428 0.4373 0.4342 0.4333 
1.0 1.0 0.8958 0.8275 0.7948 0.7758 0.7655 0.7622 

0.1 0.1 0.0726 0.071 I 0.0700 0.0694 0.0690 0.0689 
0.1 1.0 0.0968 0.0921 0.0896 0.0882 0.0874 0.0871 

5.0 0.5 0.5 0.3456 0.2993 0.2735 0.2588 0.2507 0.2482 
0.5 1.0 0.4415 0.3563 0.3178 0.2964 0.2849 0.2813 
1.0 1.0 0.8190 0.5660 0.4669 0.4142 0.3876 0.3793 

Table 5. Right wall heat flux q,(LO, ff for square enclosures (tl = Lr) of varying 
optical thickness, bottom wall bas unit emissive power, emissivity (E& other walk 

cold, emissivities (8,) 

c 
L, 60 El 0 0.2 0.4 0.6 0.8 1.0 

z 
0:s 

0.1 10 
0:5 

0.0275 0.0529 0.0263 0.0419 0.0255 0.0324 0.0249 0.0248 0.0244 0.0189 0.0235 0.0143 
0.1 0.1875 0.1610 0.1401 0.1234 0.1103 0.0959 

0.5 1.0 0.2629 0.2074 0.1604 0.1226 0.0933 0.0705 
1.0 1.0 0.5213 0.4091 0.3162 0.2417 0.1840 0.1390 

0.1 0.1 
0.1 1.0 

1.0 0.5 0.5 
0.5 1.0 
1.0 1.0 

0.1 0.1 
10 

5.0 ::: 0’5 
0.5 1:o 
1.0 1.0 

0.0287 0.0267 0.0252 0.0241 0.023 1 0.021-t 
0.0728 0.0530 0.0380 0.0268 0.0183 0.0110 
0.2216 0.1733 0.1403 0.1148 0.0948 0.0724 
0.3421 0.2408 0.1720 0.1213 0.0828 0.0497 
0.6399 0.4328 0.3079 0.2170 0.1483 0.089 1 

0.0314 0.0273 0.0235 0.0204 0.0178 0.0140 
0.1074 0.0653 0.0388 0.0226 0.0120 0.0039 
0.2682 0.1706 0.1144 0.0766 0.0498 0.024% 
0.4372 0.2324 0.1357 0.0786 0.0417 0.0137 
0.7412 0.3452 0.1984 0.1143 0.0606 0.0199 

sideways; therefore the heat flux closer to the center 
of the hot wall is greater. 

with 

To further illustrate the general effect of surface 
emissivity on radiative heat transfer, results for the 
average heat Aux at the bottom wall, qmeupr and the 
fractional heat transfer to the top wall, F,, for a square 
enclosure (L, = L.3 with identical emissivity at all 
walls (so = e,) are shown in Figs. 4 and 5. Math- 
ematically, qo.,“s and F, are defined as 

Figure 4 shows that the effect of decreasing emissivity 
on the average bottom wall heat flux is similar to that 
of increasing optical thickness. Multiple reflections 
increase the effective path length and lead to a 
reduction in the average heat flu.. This effect is more 
significant for systems with small optical thicknesses. 
From Fig. 5, the fractional heat transfer decreases 
with increasing optical thickness due to the insulating 
effect of the medium. For Lt z=- 0.5 the fractional heat 
transfer decreases with increasing E,,. For L., c 0.5 the 

I 

!lib.ay = M, 0) dv (1% 

(20) 
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FIG. 3. e, = e, = 0.1; e0 = 1.0, E, = 0.1. Isotherms (-*-) and flux lines (---) for L, = L2 = 1.0. 

0.0 
I 3 

FIG. 4. Averaged bottom wall heat flux, qib._, vs optical thickness. L, - LI, e. = e, varying. 
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I I I I 
1.0 2.0 3.0 4.0 

L,=LzE 

FIG. 5. Fractional heat transfer, F,, vs optical thickness, LI = L2, e. = E, varying. 

fractional heat transfer increases with increasing e,. 
This inversion occurs because increasing the emiss- 
ivity increases the amount of energy available to be 
absorbed by the side and top walls while the small 
optical thickness allows more energy to be transferred 
directly to the top wall, without intermediate absorp- 
tion. 

4.2. Case 2: unit heat flux at bottom wall and three 
cold black walls 

Solutions are generated from equation (9). For 
square enclosures with black walls (L., = L2 = 0.1, 
1.0, 5.0), numerical data for temperature and heat 
flux distributions are presented in Tables 6-g. In Fig. 
6 the centerline temperature distributions are 
presented. It should be restated that the heat flux and 
temperature distributions in the medium are indcpen- 
dent of the emissivity and temperature of the bottom 
wall. Therefore, significant temperature slip can occur 
even in the optically thick limit for this class of 
problem. The effect of the change in optical thickness 
on the temperature depends on position. For points 
near the cold (top) wall, temperature decreases with 
increasing optical thickness. For points away from 
the cold wall temperature increases with increasing 
optical thickness. The fall in temperature for points 
near the cold wall can be attributed to increasing 

Table 6. Emissive power distribution e(g, 0 for square 
enclosures with a bottom wall that is black and has unit 

normal heat flux, other walls black and cold 

9 
L, c 0 0.1 0.2 0.3 0.4 0.5 

1.0 0.1169 0.1252 0.1320 0.1370 0.1402 0.1412 
0.1 0.5 0.1771 0.2044 0.2269 0.2436 0.2538 0.2572 

0.0 0.2656 0.5269 0.5307 0.5329 0.5342 0.5346 

I.0 0.0737 0.0866 0.0960 0.1029 0.1070 0.1084 
1.0 0.5 0.1779 0.2298 0.2675 0.2946 0.3109 0.3164 

0.0 0.3622 0.7281 0.7718 0.7982 0.8128 0.8176 

1.0 0.0219 0.0381 0.0507 0.0602 0.0662 0.0682 
5.0 0.5 0.1530 0.3034 0.4137 0.4946 0.5440 0.5607 

0.0 0.5422 I.4072 1.6936 1.8687 1.9669 1.9988 

intermediate absorption as the optical thickness 
increases. 

4.3. Case 3 : hot d@se bottom wall, two cold diffie 
walls and an adiabatic side wall 

Results generated for this case illustrate an inter- 
esting and important fundamental difference between 
radiative and conductive heat transfer. In conduction 
an adiabatic surface is a line of symmetry; this is 
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Table 7. Heat flux distributions q&q, 0 for square cnclosura with a bottom 
wall that is black and has unit normal heat flux, other walls black and cold 

LI c 
1.0 

0.1 0.5 
0.0 

1.0 
1.0 0.5 

0.0 

1.0 
5.0 0.5 

0.0 

9 
0 0.1 0.2 0.3 0.4 

-0.1430 -0.1230 -0.0976 -0.0677 -0.0347 
-0.2847 -0.2542 -0.2bs3 -0.1415 -0.0721 
-0.5304 -0.0186 -0.0138 -0.0093 -0.0047 

-0.1126 -0.0981 -0.0783 -0.0545 -0.0280 
-0.3280 -0.2890 -0.2306 -0.1592 -0.0810 
-0.7396 -0.1487 -0.1091 -0.0720 -0.0358 

-0.0442 -0.0421 -0.0349 -0.0248 -0.0129 
-0.3337 -0.3027 -0.2431 -0.1687 -0.0861 
-1.1526 -0.4055 -0.2762 -0.1743 -0.0846 

0.5 

0.0000 
0.0000 
O.OOfBl 

0.0000 
0.0000 
0.0000 

KE 
0.0000 

Table 8. Heat flux distributions q&q. 0 for square enclosures 
with a lower wall that is black and has unit normal heat flux, 

other walls black and cold 

diffuse behavior by the walls has a significant effect 
on heat tlux and temperature distributions. 

4 
L, J 0 0.1 0.2 0.3 0.4 0.5 

1.0 0.3314 0.3633 0.3899 0.4101 0.4228 0.4270 
0.1 0.5 0.4306 0.5178 0.5919 O&460 0.6782 0.6887 

0.0 1.0000 l.OOoO l.OoOO 1.0000 1.0000 l.oooo 

1.0 0.2000 0.2388 0.2679 0.2893 0.3026 0.3070 
1.0 0.5 0.3207 0.4047 0.4762 0.5285 0.5597 0.5700 

0.0 1.0000 l.MOO l.OONl 1.OOOo 1.0000 1.0000 

1.0 0.0516 0.0923 0.1238 0.1475 0.1622 0.1672 
5.0 0.5 0.1343 0.2234 0.2986 0.3536 0.3866 0.3975 

0.0 1.0000 l.OOOo 1.0000 Loo00 l.OOW 1.OOOo 

not always the case in radiative heat transfer. To be 
considered a line of symmetry in radiative heat trans- 
fer, a surface must be both adiabatic and specular. The 
left-hand-side solution for an enclosure with L, = 2.0, 
L z = 1.0 and case 1 boundary conditions can thus 
be interpreted as the solution to a square enclosure 
L, = L2 = 1.0 with a hot diffuse bottom wall, cold 
diffuse upper and left walls and a perfectly specular, 
adiabatic right wall. This solution is different from 
that with a diffuse adiabatic right wall. To illustrate 
the difference, isotherms and flux lines for the diffuse 
and specular adiabatic right walls are shown side by 
side in Fig. 7. Clearly the diffuse-adiabatic right wall 
enclosure does not have maximum temperatures at 
the right wall, unlike the specular/symmetric right wall 
enclosure. The flux lines are also much more curved 
for the specular/symmetric case. This indicates a 
larger portion of the total energy is transferred to the 
left side wall in the specular/symmetric case. Lastly, 
the temperature distribution is much sharper for the 
diffuse-adiabatic wall ; for the diffuse-adiabatic case 
regions near the bottom wall are hotter and regions 
far away are cooler. These results show that non- 

5. CONCLUSIONS 

Based on a superposition procedure, solutions to 
problems of two-dimensional radiative equilibrium 
in a rectangular enclosure with complex boundary 
conditions are generated. The general effects of sur- 
face emissivity, a heat flux boundary condition, and 
an adiabatic specular/diffuse surface are illustrated 
with numerical data. 

For an enclosure with specified wall temperature (a 
hot lower wall and three isothermal cold walls), the 
general conclusions are given below. 

(1) The medium temperature and heat transfer 
decmases with decreasing emissivity at the bottom wall. 
Significant temperature slips occur at the hot-cold 
comer of the enclosure, independent of optical thick- 
ness and increasing as emissivity decreases. The 
medium temperature distribution is more uniform in 
enclosures with low surface emissivity. 

(2) For an enclosure with equal surface emissivity, 
the heat transfer (as illustrated by F, the fractional 
heat transfer from the bottom surface to the top sur- 
face) is a sensitive function of both optical thickness 
and surface emissivity. F, decreases with decreasing 
surface emissivity in the optically thin limit while 
it increases with decreasing surface emissivity in the 
optically thick limit. 

For an enclosure with a uniform heat flux at the 
bottom wall, the medium temperature is shown to 
be independent of both the surface temperature and 
surface emissivity of the bottom wall. Specitication of 
the heat flux and surface emissivity are required to 
determine the surface temperature in a pure radiation 
problem, Significant temperature slip is observed for 
all optical thicknesses. 

For an enclosure with an insulated boundary, it was 
shown that the insulated boundary is not a plane of 
symmetry unless it is also a specular surface. Sig- 
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FIG. 6. Centerline temperatures for radiative heat transfer in an enclosure with unit normalized heat flux 
at the lower wall. 

nificant difference is observed in both temperature 
distribution and heat transfer between results gen- 
erated with an adiabatic specular boundary and those 
generated with an adiabatic diffuse boundary. 

The results presented are a small portion of the 
many permutations of geometry, optical thickness 

spa~lor, od&hatic right wall 

and surface boundary conditions that can be handled 
with the method presented. For instance it is possible 
to handle mixed boundary condition problems where 
the emissivity, temperature or heat flux of a wall can 
be a function of position. Many two-dimensional rec- 
tangular enclosures can be analyzed with minimal 

diffuw, adiabatic right wok 

FIG. 7. Specular, adiabatic right wall ; ditTUse, adiabatic right wall. Isotherms (-*-) and flux lines (- - -) for 
L,=L,= 1.0, Eg = 1.0, e, = 0.1. 
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effort once the fundamental solutions are generated 
and stored. The storage requirements using (It x 1 I) 
grids for seven diierent enclosures are well under 1 
megabyte. This method can also be extended to 
analyze three-dimensional enclosures. 
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APPENDIX: EVALUATION OF AaGlrra AND BLf 

At rl= 0 and [ = 0, evaluation of the integrals in equation 
(11) over a rectangular Nfl xN+ 1 grid can be written 
as sums of integrals over each of the rectangular elements. 
Specifically, let 

4uALL2&~AO 

(Al) 

be an integral over a rectangular element bounded by the 
four points (tt,, <& (tt,. i,+ I). @I*+ r, W and ()ln+ t. C+ r). 
Utilizing equation (17). it can be readily shown that evaiu- 
ation of N;, requires the following four integrals : 

H 1.D = 
Is 

S,(r)rcos#drd+ (A31 
a.h? 

(A41 

HI, = 0 Sl(r)r2cos4sin4drd4. (AS) 
m.nr 

Upping the recursive relation for S,(r), the above four 
integrals can be simplified into a single integral in 4. Hoe6 
for exampk, becomes 

/I2 = tan-’ &(a+ I)& 
L,(m+I)& 

QA(: /I, = tan-‘------ 
&m& 

W) 

(A71 

(A81 

(A91 

(Al61 

All integrals required in the evaluation of equation (A6) and 
analogous expressions for Ho.,, Hleo and H,., are of the form 

G,&(x, v) 

s” 

“‘(Y/X) 
=ti 

0 
S2+,,_&sec4) tan’#rcas’+‘-C4d+ 

(Al 1) 

Previous works [7,8] utilizing the properties of S.(x), evalu- 
ated the abow integnds with littk effort. In terms of the 
function t&(x, y), H,.,(i, j = 0, 1) can be written as 
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4 =M.,Mm+l)~, L&Cl-M,Lm&, L&I 

-Mi.,[L,(m+l)~.L,(n+I)Acl+M,~~L,m~,L,(n+IW1 

6412) 

with 

E. E. TAKMA 

A i.jnn = 4PE. m=i,n=j 

Ai.,,w = 2(Pg-j+ PE_,_ I), 

A,, = 2(PiOi0 + PA!,_ I.& 

Ai.,Jna = P;“,a_,+P’.o _ _ I i In, 

WW 
m=r (Al9b) 

n=j (A19c) 

(Gj.ti(.rt Y) +Gi.j.tz(Y, x)). 
+P21*d_,_ t+Pili-la-j-1 (A19d) 

whenm#O,Nandn#O,N; 
(A13a) A ,,,mn = 2PtO,, m = i,n = j (A2Oa) 

Since G,(O, 0) is undefined, M,,(O, 0), which is required A ,.,mr = 2P&_ ,, m = i 
in the evaluation of equation (A12) when m = n = 0, is 

W-W 

interpreted as AUrr I p”.f. +py _ I 1.0 II , ,.o. n -i ww 

Mi,,(O,O) = !i_m,Mi.j(O*~). (A13b) A ,.jfln = Pzl,_j_ I + PA!,_ In-j- I ww 

Using equation (17), N,,,,(L ,, L2, Aq. Ai) can be written as 
whenm#O,Nandn=O,N; 

P:: = (1 +m+n+mn)HO.o- (I+n) 2 

HO. I HI,, 
-(’ +m)m + L,LrAqAC 

P,!,$ = -(m+mn)H,,+(I+n)~ 
I 

mHo I HI., 
+L~L\C-L,L~A~A~ 

Ho. I 
P$, = -(n+mn)H,,,+(l+m)~ 

nH, o H, I 
+zqp-~ 

A ,Jnn = ZP:;:, m = i,n = j (A21a) 

6414) A,, = P$;l_j+ PO.‘_ _ on, I, m-1 (NW 

A,, = 2Piti_ ,.O, n = j (A2lc) 

A,, = P;“,_,,_,+P’f._ _‘_ II I I#, I (A214 
when m = 0, N and n # 0, N; 

ALimA = PO.0 o,o, m = Ln -i WW 
(A13 

Ai,,,, a PO.‘_ _ or/ 19 m=i (A22b) 

Ai.,mn = P:“,_ 1.0, n=j (A22c) 

A&/M =P’*l._ __ mr In, I (A22d) 

(A16) whenm=O,Nandn#O,N. 
The above coefficients are applicable for all fundamental 

solutions. Bij, on the other hand, varies for the diierent 
fundamental solutions. For FQ,,, q, 0, B&, is given by 

4, = Go.o.o(L~A& L I (4, w - iAd) 
(A17) 

-Go.o.o(LJAC. Li(&- i,r -iArM. (A23) 

After equation (18) is solved, the fundamental heat thtx G(&. P’.’ = mnHo.o- ~H,o mH0, Hi I 
ma L-A++. 

ML, AiLz L,L&M 9. () can begenerated from equations (15) and (16) utilizing a 

(Al@ 
similar procedure for the evaluation of the required integrals. 

It is important to emphasize that evaluation of the function 
By a simple coordinate transformation, the above results can G,.,,(x, y) is the only required numerical integration in the 
also be applied to the evaluation of an integral over present solution procedure. As demonstrated in previous 
a rectangular element with respect to an arbitrary point works 17, 81. GLj&, y) satisfies a set of recursive relations. 
(9,. 0. For the few integrals which need to beevahrated numerically, 

The coefficients ALjmn can now be evaluated in terms of the computation generally requires little dfort. 
Pz*. The specific relations are 

TECHNIQUE DE SUI’ERF’QSITION POUR L’EQUILIBRE RADIATIF DANS DES 
CAVITES RECTANGULAIRES AVEC DES CONDITIONS AUX LIMITES COMPLEXES 

RQumc-on utilise la superposition des solutions fondamentaks pour trouver Ies distributions de thtx 
thermique et de temperature dans des cavitb rectangulaim bidimensionneUes f parois grises avec un milieu 
gris absorbant et cmissif, a diffusion isotrope. Les solutions fondamentales concement les c&t& avec des 
front&es noires et un changement d%chelon de temI&ature sur un intervalle fini de paroi. Elks sent 
obtemres en utilisant une variation de la m&ode wnventiommBe de zonage. Des diatrii fines de Bux 
thermique et & temperature pour les cas typiquu sent p&sent&s pour illustrer la simplicitt de lp prokiure 
de superposition. Sur la base de ces rcsultats. on discute les effets des wnditions aux hmitu sur la 

distribution de temp6rature et de transfert de chaleur. 

UBERLAGERUNGSMETHODE FUR STRAHLUNGSGLEICHGEWICHTE IN 
Rm-mcKm~~ tiuMEN MIT KOMPLEXEN RANDBEDINGUNGEN 

Zumnunenf~Die Uberlagentng von Grundgleichungen wird angewendet, um Temperatur- und 
Wiirmestromverteilungen in rechtwinkligen zweidimensionalen Riiumen mit grauen Wgnden und einem 
grau strahlenden, isotrop streuenden Medium N berechnen. Als L&ung e&en sich Temperatur- tmd 
Wkmestromverteilungen fiir Riiume mit schwaraen Wgnden und in einem endlichen Wandabschnitt 
stufenweise vergnderte Temperaturen. Dabei wird eine Variation der iibtichen Zonen-Methcde ange- 
wandt. DetaiUierte Wiirmestrom- und Temperaturverteihmgen werden fiir grundlegende FIiIle vorgeatellt, 
urn die einfache Anwendbarkeit der &rlagerungsmethode zu zeigen. Von diesen Ergebnissen ausgehend, 
wird der EinfM der Randbedingungen an der Obefiche auf die Temperatur- und Wiimxstrom- 

verteilung diskutiert. 
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